
Concurrency Correctness Witnesses with Ghosts

Manuel Bentele1,2 Dominik Klumpp1 Frank Schüssele1

July 17, 2023
1University of Freiburg, Freiburg im Breisgau, Germany
2Hahn-Schickard-Gesellschaft, Villingen-Schwenningen, Germany

State of witnesses

Sequential Concurrent
Correctness Violation Correctness Violation

ReachSafety ✓ ✓ ✓

NoOverflows ✓ ✓ ✓

Memsafety ✓ ✓ ✓

NoDataRace - - ??? ???

2

Motivation

Concurrency correctness witness proposal1:

• Thread-modular location invariants
• Problem: thread-modular reasoning is incomplete
• Thesis: Witness Format should be based on complete notion of proof

• Additional extension to reason about mutexes
• Specific to language / pthread features
• However: reasoning about mutual exclusion is crucial for concurrent program proofs

1Simmo Saan and Julian Erhard. “Beyond Automaton-Based Witnesses and
Location Invariants”. 4th Workshop on Cooperative Software Verification (COOP 2023).
Apr. 2023.

3

Incompleteness

int x;

thread inc () {
int n = __VERIFIER_nondet_int ();
while (x < n) {

x++;
//@ invariant ???

}
}

thread main () {
pthread_create (inc);
x = 42;
assert x >= 42;

}

• Goal: Give useful invariant at specified
location

• Problem: depends on the interleaving
• Current witness format not expressive

enough

4

Thread-Modular Proofs with Ghost Variables

• Proofs require interleaving information
• “Good” proof: as little interleaving information as possible
• “Good” witness: as little control flow information as possible

• Well-known approach: instrument program with ghost variables
• Thread-modular invariants + ghost variables: proof rule of Owicki and Gries2

• Sound and (relatively) complete, even for unbounded threads3

⇒ Theoretical basis for our witness proposal

2Susan Owicki and David Gries. “An Axiomatic Proof Technique for Parallel
Programs I”. In: Acta Informatica 6 (1976), pp. 319–340. doi: 10.1007/BF00268134.

3Leonor Prensa Nieto. “Completeness of the Owicki-Gries System for
Parameterized Parallel Programs”. In: IPDPS. IEEE Computer Society, 2001, p. 150.

5

https://doi.org/10.1007/BF00268134

Witnesses based on Owicki-Gries

Owicki-Gries Proofs:
• Ghost Variables

• record information about execution
• do not influence execution
• added to program text

• Location Invariants
• use ghosts & program variables
• inductive within a thread
• interference-free wrt. other threads

Concurrency Witnesses with Ghosts:
• Ghost Variables

• record information about execution
• do not influence execution
• specified in witness

• Location Invariants
• use ghosts & program variables
• must hold whenever

program is in location

6

ProgramWitness with ghosts

int x;
int g = 0;

thread inc () {
int n = __VERIFIER_nondet_int ();
while (x < n) {

x++;
//@ invariant g != 1 || x >= 42

}
}

thread main () {
pthread_create (inc);
atomic { g = 1; x = 42; }
assert x >= 42;

}

- entry_type : ghost_variable
name: g
scope : global
type: int
initial : 0

- entry_type : location_invariant
location : ...
location_invariant :

string : g != 1 || x >= 42

- entry_type : ghost_update
variable : g
expression : 1
location : ...

7

Witness semantics

• Initialization of global ghosts after initialization of program variables
• Update atomically right before leaving the specified location
• Expression in updates must not have side-effects or undefined behaviour

• Special handling for data races: Assume every ghost update happens-before (or
happens-after) expression evaluations in the program
⇒ Ghost updates do not introduce data races

8

Fancy ghost variables

int x;
int g = 0;

thread inc () {
int n = __VERIFIER_nondet_int ();
while (x < n) {

x++;
//@ invariant x >= g

}
}

thread main () {
int val = __VERIFIER_nondet_int ();
pthread_create (inc);
atomic { g = val; x = val; }
assert x >= val;

}

• Ghosts that are set to program
variables

• Allows reasoning over more than just
interleavings

9

Mutex reasoning with ghosts

int used = 0, g = 0;
mutex m;

thread producer () {
while (1) {

atomic { g = 1; lock(m); }
used ++; used --;
atomic { g = 0; unlock (m); }

}
}

thread main () {
pthread_create (producer);
//@ invariant g != 0 || used == 0
atomic { g = 1; lock(m); }
assert used == 0;
atomic { g = 0; unlock (m); }

}

• Ghost variables to reason about
mutexes

• Invariants can relate program
variables and mutexes (via ghosts)

• However: Validator has to find
relation between m and g

10

Tool Implementation

Witness Generation:

• Standard Owicki-Gries approach: Encode program counters4

• Optimization: only necessary interleaving info

• Many more possibilities beyond encoding interleaving

Witness Validation:

• Transformation of program to instrument with ghosts
• Verification of transformed program

4Leslie Lamport. “The ’Hoare Logic’ of Concurrent Programs”. In: Acta
Informatica 14 (1980), pp. 21–37. doi: 10.1007/BF00289062.

11

https://doi.org/10.1007/BF00289062

Strengths

• Based on complete proof notion
• General approach, not bound to tool-specific representation
• Covers many different language features / synchronization mechanisms
• Remains as (thread-)modular as possible, do not encode all interleavings
• Ghost variables: not restricted to concurrency

12

Limitations

• Proof format of approaches that use reductions (with meta-reasoning) still open
research question

• General problem of witnesses how to encode such meta-reasoning
• Ghost variables could help with that encoding

• Allowed update locations? (e.g. where in loop, switch/case?)
• Problem with the general format, not only with this extension

• Further extension for multiple instances of the same thread template needed?
• thread-local ghost variables
• quantification (ACSL)
• unbounded ghost arrays

13

Conclusion

• Problem: Incomplete witnesses for concurrency
• Proposal of new extension with ghost variables
• General approach, possible to be used by different tools (generation/validation)

14

Additional materials

https://github.com/ultimate-pa/VEWIT2023-ConcurrencyGhosts

15

https://github.com/ultimate-pa/VEWIT2023-ConcurrencyGhosts
https://github.com/ultimate-pa/VEWIT2023-ConcurrencyGhosts

