
YAML-Based Format for Violation Witnesses
(work in progress)

Paulı́na Ayaziová, Dirk Beyer, Marian Lingsch Rosenfeld, Martin Spießl, and
Jan Strejček

VeWit 2023
July 17, 2023



Existing format

qistart

q1

q2

q3

qerr

3,enterFunction(main):

4: n = 2

12: v = 224

12: v = 63

introduced in 2015
based on GraphML

+ widely accepted by the community
+ improved the quality of verification tools
+ other applications, e.g. cooperative verification

− witness validators do not support all features
− verifiers do not use the whole power of the format
− semantics given on Control Flow Automata (CFA), but translation to CFA is

ambiguous

2/12



Existing format

qistart

q1

q2

q3

qerr

3,enterFunction(main):

4: n = 2

12: v = 224

12: v = 63

introduced in 2015
based on GraphML

+ widely accepted by the community
+ improved the quality of verification tools
+ other applications, e.g. cooperative verification

− witness validators do not support all features
− verifiers do not use the whole power of the format
− semantics given on Control Flow Automata (CFA), but translation to CFA is

ambiguous

2/12



Existing format

qistart

q1

q2

q3

qerr

3,enterFunction(main):

4: n = 2

12: v = 224

12: v = 63

introduced in 2015
based on GraphML

+ widely accepted by the community
+ improved the quality of verification tools
+ other applications, e.g. cooperative verification

− witness validators do not support all features
− verifiers do not use the whole power of the format
− semantics given on Control Flow Automata (CFA), but translation to CFA is

ambiguous

2/12



Our goals

design a format for violation witnesses with a clear semantics on source code
develop validators that fully implement the format

=⇒ the format needs to be as simple as possible

3/12



Our goals

design a format for violation witnesses with a clear semantics on source code
develop validators that fully implement the format

=⇒ the format needs to be as simple as possible

3/12



Design decisions

start with the support of the most common properties and sequential
programs and then extend it
integrate the format to the existing YAML format for correctness witnesses

4/12



Design decisions

How many runs should a violation witness describe?

•

•

single violating run

•

•

multiple runs,
at least one violating

a lot of detailed information
values of all inputs
order of evaluation: f(x) + g(y)
addresses of allocations: p = malloc(10)
. . .

big and hard to validate

5/12



Design decisions

How many runs should a violation witness describe?

•

•

single violating run

•

•

multiple runs,
at least one violating

a lot of detailed information
values of all inputs
order of evaluation: f(x) + g(y)
addresses of allocations: p = malloc(10)
. . .

big and hard to validate

5/12



Design decisions

How many runs should a violation witness describe?

•

•

single violating run

•

•

multiple runs,
at least one violating

a lot of detailed information
values of all inputs
order of evaluation: f(x) + g(y)
addresses of allocations: p = malloc(10)
. . .

big and hard to validate
5/12



Design decisions

How many runs should a violation witness describe?

•

•

single violating run

•

•

multiple runs,
at least one violating

a lot of detailed information
values of all inputs
order of evaluation: f(x) + g(y)
addresses of allocations: p = malloc(10)
. . .

big and hard to validate
5/12



Waypoints

waypoint = basic element of witnesses

each waypoint has 4 aspects:
action - the meaning in the witness
location - code location it is associated to

filename
line number
column (optional, the default is the first suitable column)

type - the type of constraint it puts on runs
constraint - the constraint itself

6/12



Waypoints

waypoint = basic element of witnesses

each waypoint has 4 aspects:
action - the meaning in the witness
location - code location it is associated to

filename
line number
column (optional, the default is the first suitable column)

type - the type of constraint it puts on runs
constraint - the constraint itself

6/12



Waypoint types

1 assumption
location: before or after a statement
constraint: a side-effect-free expression
for example x[5] > z + 5 or ptr != NULL

2 branching
location: branching keyword like if, while, . . .
constraint: true or false

3 identifier evaluation
location: an identifier (currently only function call)
constraint: true (default value)

4 function return
location: the right parenthesis after the function call
constraint: \return op const , where op ∈ {==, ! =, <=, . . .} and const is a
constant

7/12



Waypoint types

1 assumption
location: before or after a statement
constraint: a side-effect-free expression
for example x[5] > z + 5 or ptr != NULL

2 branching
location: branching keyword like if, while, . . .
constraint: true or false

3 identifier evaluation
location: an identifier (currently only function call)
constraint: true (default value)

4 function return
location: the right parenthesis after the function call
constraint: \return op const , where op ∈ {==, ! =, <=, . . .} and const is a
constant

7/12



Waypoint types

1 assumption
location: before or after a statement
constraint: a side-effect-free expression
for example x[5] > z + 5 or ptr != NULL

2 branching
location: branching keyword like if, while, . . .
constraint: true or false

3 identifier evaluation
location: an identifier (currently only function call)
constraint: true (default value)

4 function return
location: the right parenthesis after the function call
constraint: \return op const , where op ∈ {==, ! =, <=, . . .} and const is a
constant

7/12



Waypoint types

1 assumption
location: before or after a statement
constraint: a side-effect-free expression
for example x[5] > z + 5 or ptr != NULL

2 branching
location: branching keyword like if, while, . . .
constraint: true or false

3 identifier evaluation
location: an identifier (currently only function call)
constraint: true (default value)

4 function return
location: the right parenthesis after the function call
constraint: \return op const , where op ∈ {==, ! =, <=, . . .} and const is a
constant

7/12



Waypoint actions

W follow - the waypoint has to be passed as soon as the location is
entered

W avoid - the run represented by the witness must not pass the
waypoint (“sink node”)

W target - the property violation

8/12



Witness example

start

example.c, line 22
assume x >= 1024U

example.c, line 35, keyword if
branching false

example.c, line 28, function foo()
identifier evaluation

example.c, line 152, function VERIFIER nondet int()
function return \return == 10

example.c, line 35, keyword if
branching false

example.c, line 350
assume ptr != NULL

example.c, line 819, function reach error()
identifier evaluation

no
rm

al
se

gm
en

ts
fin

al
se

gm
en

t

9/12



Witness example

start

example.c, line 22
assume x >= 1024U

example.c, line 35, keyword if
branching false

example.c, line 28, function foo()
identifier evaluation

example.c, line 152, function VERIFIER nondet int()
function return \return == 10

example.c, line 35, keyword if
branching false

example.c, line 350
assume ptr != NULL

example.c, line 819, function reach error()
identifier evaluation

no
rm

al
se

gm
en

ts
fin

al
se

gm
en

t

9/12



Witness example

start

example.c, line 22
assume x >= 1024U

example.c, line 35, keyword if
branching false

example.c, line 28, function foo()
identifier evaluation

example.c, line 152, function VERIFIER nondet int()
function return \return == 10

example.c, line 35, keyword if
branching false

example.c, line 350
assume ptr != NULL

example.c, line 819, function reach error()
identifier evaluation

no
rm

al
se

gm
en

ts
fin

al
se

gm
en

t

9/12



Witness example - YAML notation

example.c, line 35, keyword if
branching false

example.c, line 28, function foo()
identifier evaluation

example.c, line 152,
function VERIFIER nondet int()
function return \return == 10

- segment:
- waypoint:

action: avoid
type: branching
location:

file_name: example.c
line: 35

constraint:
string: false

- waypoint:
action: avoid
type: identifier_evaluation
location:

file_name: example.c
line: 28

- waypoint:
action: follow
type: function_return
location:

file_name: example.c
line: 152

constraint:
string: \return == 10

10/12



Current status and future plans

informal textual description and an example of a witness
supports only violation witnesses of reachability safety, memory safety, and
no overflows on sequential programs
three independent validators under development
support of this format by several verifiers under development

plans
write a documentation (expected availability in September 2023)
use it in SV-COMP 2023 (in addition to the GraphML format)
extend it to support parallel programs and other properties
add some features that will be requested by the community (repetitions of
segment, Kleene star, . . . ?)

11/12



Current status and future plans

informal textual description and an example of a witness
supports only violation witnesses of reachability safety, memory safety, and
no overflows on sequential programs
three independent validators under development
support of this format by several verifiers under development

plans
write a documentation (expected availability in September 2023)
use it in SV-COMP 2023 (in addition to the GraphML format)
extend it to support parallel programs and other properties
add some features that will be requested by the community (repetitions of
segment, Kleene star, . . . ?)

11/12



Conclusion

new violation witness format in YAML
very simple and easy to implement
easier to read by humans
clear semantics
extendable

12/12


