
LIV: Invariant Validation Using Straight-Line
Programs

Dirk Beyer, and Martin Spiessl



Recap: The MetaVal Approach (CAV 2020)

Program

Witness

Specification

Program’

Specification’

TRUE

FALSE

Transformer Verifier

Validator

I MetaVal uses verifiers as validators
I The transformer translates validation into a verification problem

Dirk Beyer, Martin Spiessl 2 / 14



Automaton Product of MetaVal

I MetaVal dumps the product of CFA and witness automaton into a C program
I lots of gotos, not very readable
Dirk Beyer, Martin Spiessl 3 / 14



Strength and Weaknesses of metaval

Strengths:
I Reuse of off-the-shelf verifiers
I Implementation is an one-time-effort

Weaknesses:
I Transformation is brittle and for unsound in edge cases
I Transformed programs / validation result is hard to understand
I Transformer based on CPAchecker ⇒ technology bias
I "True" witnesses might be validated (general problem with graphml witnesses)

Goal of proposed new approach:
I Keep the Pros and improve on the Cons

Dirk Beyer, Martin Spiessl 4 / 14



Inspiration: Hoare-Style Proofs

Dirk Beyer, Martin Spiessl 5 / 14



Inspiration 2:
VST-A: Foundationally Sound Annotation Verifier[2]

I Splits C program into straightline hoare triples
I Split procedure proven to be sound in Coq

Downsides:
I actual transformation implementation works on the CFG, not AST
I depends on Clight/Coq in the backend

Dirk Beyer, Martin Spiessl 6 / 14



Worflow of LIV
Program

Specification

Witness

split

SL Pro-
gram 1

SL Pro-
gram N

...

Verifier 1

Verifier N
...

Specification

Specification

∗

TRUE

UNKNOWN

FALSE

I can use any off-the-shelf verifier as backend
I small frontend using pycparser for splitting
I intended use case: inductive invariants provided in the new YAML format

Dirk Beyer, Martin Spiessl 7 / 14



Strength of LIV

Strengths:
I reuse of off-the-shelf verifiers (now proudly powered by CoVeriTeam[1])
I implementation is an one-time-effort

addressed weaknesses:
I MetaVal transformation was brittle
⇒ now AST-based, "minimally invasive", easier to check for errors

I programs + validation result now easier to understand
I technology bias: we use pycparser for parsing C files, no bias towards

CPAchecker anymore
I "True" witnesses no longer validated unless "True" is sufficient invariant

Dirk Beyer, Martin Spiessl 8 / 14



For Hoare triples we do not need a CFA/CFG

I Transformation into
Hoare triples based
on AST

I No notion of
CFA/CFG needed

I Translation of
triples into
straightline
programs is very
natural

Dirk Beyer, Martin Spiessl 9 / 14



For Hoare triples we do not need a CFA/CFG (cont.)

Dirk Beyer, Martin Spiessl 10 / 14



Splitting Procedure in LIV

I split collects sets of closed and open (missing postcondition) Hoare triples
I finalize by appending the post condition to all open Hoare triples
I simplified version of splitting from VST-A[2]

(but probably every deductive verifier does this one way or the other)

Dirk Beyer, Martin Spiessl 11 / 14



Preliminary Benchmarks

I analyzed on witnesses of zilu benchmarks from SV-COMP 2023
(containing only one loop)

I some of the invariants already inductive, but far from perfect

Dirk Beyer, Martin Spiessl 12 / 14



Further Research Directions

I use LIV in SV-COMP 2024 as validator, work towards having inductive
invariants

I expressing new YAML witness syntax as source code transformation:
I for correctness: easy, just insert invariant assertion (essentially metaval)
I for violation: would need to encode current segment number e.g. via ghost

variables
I add support for ACSL
I add other simple transformations like NoOverflow to reachability
I extend with more annotation types like function contracts etc.

Dirk Beyer, Martin Spiessl 13 / 14



More Information Online

Gitlab: https://gitlab.com/sosy-lab/software/liv/
Demonstration video: https://youtu.be/mZhoGAa08Rk

Dirk Beyer, Martin Spiessl 14 / 14

https://gitlab.com/sosy-lab/software/liv/
https://youtu.be/mZhoGAa08Rk


References I

Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative verification systems. In:
Proc. TACAS. pp. 561–579. LNCS 13243, Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_31

Wang, Q., Cao, Q.: VST-A: A foundationally sound annotation verifier. CoRR abs/1909.00097 (2019).
https://doi.org/10.48550/arXiv.1909.00097

Dirk Beyer, Martin Spiessl 15 / 14


	Appendix

